Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
2.
BMC Infect Dis ; 23(1): 337, 2023 May 19.
Article in English | MEDLINE | ID: covidwho-2325812

ABSTRACT

BACKGROUND: Understanding the epidemiology of Coronavirus Disease of 2019 (COVID-19) in a local context is valuable for both future pandemic preparedness and potential increases in COVID-19 case volume, particularly due to variant strains. METHODS: Our work allowed us to complete a population-based study on patients who tested positive for COVID-19 in Alberta from March 1, 2020 to December 15, 2021. We completed a multi-centre, retrospective population-based descriptive study using secondary data sources in Alberta, Canada. We identified all adult patients (≥ 18 years of age) tested and subsequently positive for COVID-19 (including only the first incident case of COVID-19) on a laboratory test. We determined positive COVID-19 tests, gender, age, comorbidities, residency in a long-term care (LTC) facility, time to hospitalization, length of stay (LOS) in hospital, and mortality. Patients were followed for 60 days from a COVID-19 positive test. RESULTS: Between March 1, 2020 and December 15, 2021, 255,037 adults were identified with COVID-19 in Alberta. Most confirmed cases occurred among those less than 60 years of age (84.3%); however, most deaths (89.3%) occurred among those older than 60 years. Overall hospitalization rate among those who tested positive was 5.9%. Being a resident of LTC was associated with substantial mortality of 24.6% within 60 days of a positive COVID-19 test. The most common comorbidity among those with COVID-19 was depression. Across all patients 17.3% of males and 18.6% of females had an unplanned ambulatory visit subsequent to their positive COVID-19 test. CONCLUSIONS: COVID-19 is associated with extensive healthcare utilization. Residents of LTC were substantially impacted during the COVID-19 pandemic with high associated mortality. Further work should be done to better understand the economic burden associated with related healthcare utilization following a COVID-19 infection to inform healthcare system resource allocation, planning, and forecasting.


Subject(s)
COVID-19 , Internship and Residency , Male , Adult , Female , Humans , COVID-19/epidemiology , Long-Term Care , Retrospective Studies , Alberta/epidemiology , Pandemics , Patient Acceptance of Health Care
3.
Int J Infect Dis ; 118: 73-82, 2022 May.
Article in English | MEDLINE | ID: covidwho-1700024

ABSTRACT

BACKGROUND: Many studies have examined the effectiveness of non-pharmaceutical interventions (NPIs) on SARS-CoV-2 transmission worldwide. However, less attention has been devoted to understanding the limits of NPIs across the course of the pandemic and along a continuum of their stringency. In this study, we explore the relationship between the growth of SARS-CoV-2 cases and an NPI stringency index across Canada before the accelerated vaccine roll-out. METHODS: We conducted an ecological time-series study of daily SARS-CoV-2 case growth in Canada from February 2020 to February 2021. Our outcome was a back-projected version of the daily growth ratio in a stringency period (i.e., a 10-point range of the stringency index) relative to the last day of the previous period. We examined the trends in case growth using a linear mixed-effects model accounting for stringency period, province, and mobility in public domains. RESULTS: Case growth declined rapidly by 20-60% and plateaued within the first month of the first wave, irrespective of the starting values of the stringency index. When stringency periods increased, changes in case growth were not immediate and were faster in the first wave than in the second. In the first wave, the largest decreasing trends from our mixed effects model occurred in both early and late stringency periods, depending on the province, at a geometric mean index value of 30⋅1 out of 100. When compared with the first wave, the stringency periods in the second wave possessed little association with case growth. CONCLUSIONS: The minimal association in the first wave, and the lack thereof in the second, is compatible with the hypothesis that NPIs do not, per se, lead to a decline in case growth. Instead, the correlations we observed might be better explained by a combination of underlying behaviors of the populations in each province and the natural dynamics of SARS-CoV-2. Although there exist alternative explanations for the equivocal relationship between NPIs and case growth, the onus of providing evidence shifts to demonstrating how NPIs can consistently have flat association, despite incrementally high stringency.


Subject(s)
COVID-19 , Vaccines , COVID-19/epidemiology , COVID-19/prevention & control , Canada/epidemiology , Humans , Pandemics/prevention & control , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL